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Abstract
In this paper we present current results in emotion classi-
fication based on features extracted from the speech sig-
nal and a Fuzzy Logic inference system. Our emotion
recognition system uses the pitch and energy contour of
the speech signal as basic features describing the emo-
tional state of the speaker. Additional features are related
to the speaking rate and spectral characteristics.
The classifier uses training data acquired from speakers
expressing authentic emotions. All utterances are labelled
according to a 3-dimensional emotion space representa-
tion by several human evaluators. Based thereon, we ap-
ply a rule-based fuzzy inference system which gives us an
estimation of the emotional state expressed in each utter-
ance. The rules are derived from the correlation between
the acoustic features and the emotional content attested
by the evaluators. In comparison to human evaluation
consent, the recognition results show to be a promising
basis for emotion recognition.

1. Introduction
Recognizing a human speaker’s emotional state can be
helpful in various contexts. The most promising one is
probably the man-machine interaction, e.g. the commu-
nication between an assisting robot in the household and
its human user. For the robot, emotion recognition and
classification is an important step in understanding its en-
vironment.

But also for patient monitoring, emotion recognition
might be helpful. An automatic classification of a pa-
tient’s emotional expressions reveals much information
on his/her pre-sent state.

In recent years, several works on human emotion recog-
nition have been published. In most studies features are
extracted from the acoustic signal of the person’s speech,
e.g. [1, 2, 3]. In addition, facial expression analysis is also
commonly performed to estimate the emotion, e.g. [4, 5].
All current work assumes some simplifications of the na-
ture of emotions - for example by working on artificial
emotions performed by actors, or by restricting the emo-
tion discrimination to few classes only. Some of these

simplifications are reasonable, of course, since the gen-
eration, communication, and perception of human emo-
tion is a very complex matter. In our emotion classifica-
tion approach, however, we want to approximate in some
sense the human emotion perception. Therefore we use
only authentic emotion data consisting of recordings of
non-professional speakers.
As a classifier, we chose a fuzzy inference system based
on simple IF . . . THEN . . . rules. This is supported by
the fact that human emotion perception is rather fuzzy
in terms of distinction of single emotion realizations. A
comparable approach was followed by Lee and Narayanan
[6], who performed a classification into two classes neg-
ative and non-negative emotions.
The rule system is constructed using the correlation be-
tween acoustic features and the emotion contents for each
utterance in a database. Since we work on authentic emo-
tions of spontaneous speech, the emotional content is at-
tested prior to this classification by human listeners’ eval-
uation [7]. To assess our classifier, we compare the clas-
sifier output to this attested emotion by the evaluators.

The paper is organized as follows: Section 2 presents the
basics of our emotion space approach as well as the eval-
uation output. Section 3 describes the acoustic features
extracted from the speech signal. Section 4 introduces the
database worked on as well as the parameters that are de-
rived from the database in order to initialize the classifier.
In section 5, the setup of the fuzzy logic classifier is pre-
sented with its elements fuzzification, inference, and de-
fuzzification. Some emphasis is laid on the construction
of the rule system. Section 6 presents significant results
of the classification of the data in our database. Section 7
draws some conclusions and gives an outlook on related
future work.

2. Emotion representation

As described in [7], we use a three-dimensional emotion
space representation. Every emotion to be recognized
consists of three components: Valence, Activation, and
Dominance. Valence (V) describes how positive or nega-
tive an emotion is felt. The second dimension, Activation
(A) expresses the degree of excitation. Dominance (D)



refers to how strong or weak the speaker appears.
The classifier output is compared to an emotion estimate
based on the average ratings of 5 human evaluators, each
weighted by their correlation to the mean value of all
other evaluators. For evaluation, 5 text-free iconic rep-
resentations of each emotion component are used [7]. To
keep consistency with this assessment method, for each
of the entities Valence, Activation, and Dominance, the
scale of the classifier output ranges from 1 to 5 with 3
being the neutral value. The orientation of the scales is
as follows: For Valence, 1 corresponds to a very positive,
and 5 to a very negative emotion. For Activation, 1 cor-
responds to a very excited, and 5 to a very calm speaker.
For Dominance, 1 corresponds to a very weak, and 5 to
very strong speaker.

3. Feature extraction
Currently, M = 46 acoustic features are extracted from
the speech signal. They are listed in the first column of
Tab.1. They can be divided into the groups of 9 pitch re-
lated features, 5 speaking rate related features, 6 volume
related features, and 26 spectral features:

Pitch related features: f0 mean value (f0 mean), stan-
dard deviation (f0 std), median (f0 median), min-
imum (f0 min), and maximum (f0 max), 25%
and 75% quantiles (f0 quartlow, f0 quartup), dif-
ference between f0 maximum and minimum
(f0 range), difference of quartiles (f0 quartrange)

Speaking rate related features: ratio between the
durations of unvoiced and voiced segments
(pause to speech ratio), average duration of
voiced segments (speech duration mean), stan-
dard deviation of duration of voiced segments
(speech duration std), average duration of un-
voiced segments (pause duration mean), and
standard deviation of duration of voiced segments
(pause duration std)

Volume related features: volume mean (vol mean),
standard deviation (vol std), maximum (vol max),
25% and 75% quantiles (vol quartlow,
vol quartup), and difference of quartiles
(vol quartrange)

Spectral features: mean value and standard deviation of
13 Mel Frequency Cepstral Coefficients (MFCC)
(mfcc01 mean to mfcc13 mean and mfcc01 std to
mfcc13 std )

All features can be extracted directly from the speech
signal without the need of an automatic speech recogni-
tion (ASR) unit.
The pitch related features are based on an estimation of
the pitch contour for voiced segments of the utterance.
This is obtained using the autocorrelation method [8].
The volume based features are derived from the envelope
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Figure 1: Histogram of emotion occurances in database

of the time-domain signal.

As it can be assumed that the features are partly corre-
lated, a Principal Component Analysis (PCA) should be
applied to obtain uncorrelated features. The computa-
tional complexity could be reduced by using a new basis
of M̃ ≤ M basis vectors, using eigenvalues greater than
a given threshold only [9]. This could reduce the number
of (transformed) features to M̃ , keeping the most signifi-
cant ones only.

4. Data
4.1. Data acquisition

The database used for this emotion recognition study con-
sists of emotional speech of guests in a TV talk-show.
Among the 19 speakers are both male and female sub-
jects. In total, the database contains 499 sentences of
emotional speech in German.

The signals are sampled using a sampling rate of 16
kHz and a resolution of 16 bit. The range of emotions
in this database, attested by the evaluators, can be seen
in Fig.1. A wide range of emotions is covered by the
database, especially for the Activation and Dominance
components. Valence, however, seems not to be cap-
tured in all of its possibilities since the greater part of the
database lies in the range of [2.5, 4.5] which signifies neu-
tral or negative emotions. This is due to the topics in talk-
shows: In most cases, they cover personal problems of
the guests, like family issues or troublesome wife-husband
relations. In addition, it has to be mentioned that av-
eraging over several human evaluators of course results
in emotion values concentrating more around the neutral
values than around the extreme values like 1 or 5.

4.2. Correlation of features

For each of the features m defined in section 3, the cor-
relation between the feature value vm and each of the
emotion components x(i), i ∈ {V, A, D} was calculated.
These values are a measure of how the emotion output of
the classifier should follow the input features. Therefore,
these correlation coefficients have a major influence on
the set-up of the classifier (c.f. subsection 5.2).
Let vm,n be the value of the mth feature of the nth sig-
nal in the database, m = 1, . . . , M and n = 1, . . . , N ,



respectively. Also, let x
(i)
n be the ith emotion compo-

nent, i ∈ {V, A, D} of the emotion x attested to sig-
nal n by the evaluators. Then the correlation ρ

(i)
m =

ρ(vm, x(i)) between the two sequences {vm,n}n=1,...,N

and {x
(i)
n }n=1,...,N can be calculated according to

ρ(i)
m =

N
∑

n=1
(vm,n − v̄m)

(

x
(i)
n − x̄(i)

)

√

N
∑

n=1
(vm,n − v̄m)

2

√

N
∑

n=1

(

x
(i)
n − x̄(i)

)2
, (1)

where mean subtraction was accounted for.

Tab. 1 shows these correlation coefficients for all
features and all emotion components. It can be seen
that most of the features actually do have a correlation
significantly different from 0. Pitch and volume related
features show highest correlation, followed by the
spectral features. Speech rate related features show the
smallest correlation to the emotion components. For
example, the correlation between feature vol mean and
emotion component Activation is ρ

(A)
10 = −0.77, and the

correlation between feature pause duration mean and
Valence is ρ

(V )
19 = −0.06.

The emotion entities Activation and Dominance in
general show higher absolute values of correlation than
Valence.
These correlation coefficients are an essential basis for
the initialization of the classifier described below.

5. Classification
As a classifier, we apply a rule-based fuzzy inference sys-
tem (FIS) consisting of the elements fuzzification, infer-
ence, and defuzzification [9]. A separate classifier is con-
structed for each of the emotion components x(i), i ∈
{V, A, D}. Fuzzy logic is used since, in general, all emo-
tion descriptions are fuzzy and vague.
Therefore we switch over to fuzzy description terms for
the emotion components (see Fig.2):

x(V ) → B
(V )
l ∈ B(V ) = {positive, neutral, negative}

x(A) → B
(A)
l ∈ B(A) = {excited, neutral, calm}

x(D) → B
(D)
l ∈ B(D) = {weak, neutral, strong}

(2)
It is not before the last step of defuzzification that these

fuzzy terms are transformed back into crisp numeric val-
ues along the scales x(i) ∈ [1, 5], i ∈ {V, A, D}.

In the following subsections, each element of the fuzzy
inference system is described.

5.1. Fuzzification

First of all, the crisp input variables are fuzzified. These
input variables are the M features extracted from speech.

Table 1: Correlation between acoustic features and emo-
tion components

Emotion component
m Feature V A D
1 f0 mean 0.44 -0.59 0.54
2 f0 std 0.20 -0.42 0.40
3 f0 median 0.46 -0.58 0.53
4 f0 min 0.08 -0.17 0.13
5 f0 max 0.15 -0.33 0.30
6 f0 quartlow 0.44 -0.51 0.45
7 f0 quartup 0.44 -0.61 0.56
8 f0 range 0.12 -0.26 0.24
9 f0 quartrange 0.25 -0.49 0.47

10 vol mean 0.39 -0.77 0.75
11 vol std 0.22 -0.64 0.66
12 vol quartlow 0.41 -0.63 0.58
13 vol quartup 0.32 -0.73 0.73
14 vol max 0.26 -0.60 0.60
15 vol quartrange 0.19 -0.57 0.60
16 pause to speech ratio -0.10 0.36 -0.38
17 speech duration mean 0.15 -0.26 0.27
18 speech duration std 0.12 -0.22 0.22
19 pause duration mean -0.06 0.30 -0.28
20 pause duration std -0.08 0.26 -0.26
21 mfcc01 mean 0.34 -0.73 0.71
22 mfcc01 std -0.20 0.21 -0.17
23 mfcc02 mean -0.36 0.31 -0.26
24 mfcc02 std -0.26 0.41 -0.37
25 mfcc03 mean -0.21 0.39 -0.37
26 mfcc03 std 0.06 -0.20 0.23
27 mfcc04 mean -0.08 0.11 -0.11
28 mfcc04 std 0.09 -0.22 0.28
29 mfcc05 mean -0.13 0.21 -0.18
30 mfcc05 std 0.08 -0.25 0.25
31 mfcc06 mean 0.03 0.03 -0.03
32 mfcc06 std 0.15 -0.29 0.29
33 mfcc07 mean 0.11 0.05 -0.06
34 mfcc07 std -0.06 -0.07 0.06
35 mfcc08 mean 0.00 0.06 -0.08
36 mfcc08 std 0.11 -0.24 0.25
37 mfcc09 mean -0.11 0.13 -0.13
38 mfcc09 std 0.17 -0.35 0.36
39 mfcc10 mean -0.08 0.06 -0.06
40 mfcc10 std 0.18 -0.34 0.35
41 mfcc11 mean -0.05 0.06 -0.08
42 mfcc11 std 0.32 -0.45 0.42
43 mfcc12 mean -0.12 0.17 -0.17
44 mfcc12 std 0.36 -0.52 0.49
45 mfcc13 mean -0.24 0.30 -0.27
46 mfcc13 std 0.39 -0.54 0.51

They are transformed to linguistic variables with distinct
membership grades.
We use the fuzzy set

A = {low, medium, high} (3)
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Figure 2: Membership functions of emotion components

of K = 3 linguistic variables for the fuzzification of each
feature. In contrast to crisp logic, each feature may now
be both low and medium, e.g., to a certain membership
grade.
The membership grade µk,m relating feature m to the
linguistic variable Ak ∈ A is defined by evaluating the
membership function µAk,m(α) at the point of the fea-
ture value α = vm:

µk,m = µAk,m(vm), (4)

for 1 ≤ m ≤ M = 46, 1 ≤ k ≤ K = 3.
The membership functions µAk,m(α) are different for each
acoustic feature. They are piecewise linear functions, de-
fined by few parameters that are extracted from our train-
ing database. If Vm = {vm,1, . . . , vm,N} is the set of
the feature values vm,n of all signals in the database,
n = 1, . . . , N , we calculate the 10% and 90% quantiles
of Vm. This 10-90 range determines the edges of the K

membership functions of vm. The 10-90 range instead of
the complete value range of the feature values is chosen
in order to neglect single outliers.

Example: Let us take the first feature f0 mean as an ex-
ample. 10% of all f0 mean values in the database are
smaller than 175 Hz, and 90% of all f0 mean values are
smaller than 300 Hz. Therefore we define the member-
ship functions as shown in Fig.3.
If we want to classify a signal whose first feature value is
v1 = 220 Hz, this would result in the three membership
grades

µ1,1 = µA1
(v1) = 0.27, for A1 = low

µ2,1 = µA2
(v1) = 0.73, for A2 = medium

µ3,1 = µA3
(v1) = 0, for A3 = high.

(5)
This is indicated in Fig.3 by the thin lines.

5.2. Rule system

The rule system is the core element of the fuzzy logic
classifier. It defines how the fuzzified input variables
Ak ∈ A are related to the fuzzy output variables B

(i)
l ∈

B(i). We apply simple IF. . . THEN. . . rules, always link-
ing one premise to one conclusion:

IF vm is Ak THEN x(i) is B
(i)
l . (6)
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Figure 3: Fuzzy membership functions low, medium, and
high of feature f0 mean. The on-/offset of the functions
is defined by the quantiles Q10% = 175 Hz and Q90% =
300 Hz, respectively. The thin line indicates the example
of v1 = 220 Hz.

Since there are K = 3 linguistic variables Ak for each
of the M = 46 features vm, we get K · M = 138 rules
for each of the emotion component x(i), i ∈ {V, A, D}.
This is the total number of rules for all linguistic vari-
ables of x(i). As we use the L = K = 3 linguistic vari-
ables B

(i)
l , 1 ≤ l ≤ L, for the description of x(i), we

have M = 46 rules for each of the fuzzy output variables
B

(i)
l .

Note that the kth input variable Ak does not necessarily
imply a conclusion of the kth output variable B

(i)
k . The

sign of the correlation coefficient ρ
(i)
m as stated in (1) de-

fines which output variable B
(i)
l is used in the rule:

l =

{

k, ρ
(i)
m ≥ 0

K − k + 1, ρ
(i)
m < 0

. (7)

The application of the rules is as follows: For each rule
relating feature m to the output variable B

(i)
l , a degree of

support H
(i)
l,m of the conclusion is calculated. Since we

use only one premise in each rule, this can be calculated
as

H
(i)
l,m = µk,m, (8)

where l and k are related by (7).

Rule weights. As described in section 4.2, the correla-
tion between the acoustic features vm and the emotion
components x(i) varies significantly for the different fea-
tures. Therefore the correlation coefficients ρ

(i)
m as shown

in Tab.1 are used as weight factors for the rules. As a con-
sequence, the degrees of support are multiplied by these
weights,

H̃
(i)
l,m = H

(i)
l,m · ρ(i)

m . (9)

Example: The first row of Tab.1 shows the correlation
between the feature m = 1, f0 mean, and the emotion
components x(i), i ∈ {V, A, D}. For this example, we
use ρ

(V )
1 = 0.44 and ρ

(A)
1 = −0.59.

The rules according to (6) and (7), relating the fuzzy input
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set (3) to the fuzzy output set (2), can be defined as

IF v1 is low THEN x(V ) is positive

IF v1 is medium THEN x(V ) is neutral

IF v1 is high THEN x(V ) is negative

IF v1 is low THEN x(A) is calm

IF v1 is medium THEN x(A) is neutral

IF v1 is high THEN x(A) is excited.
(10)

Applying these rules to the membership grades (5) of the
fuzzified feature v1 = 220 Hz yields the following de-
grees of support:

H̃
(V )
1,1 = 0.27 · 0.44 = 0.1188

H̃
(V )
2,1 = 0.73 · 0.44 = 0.3212

H̃
(V )
3,1 = 0 · 0.44 = 0

H̃
(A)
3,1 = 0.27 · 0.59 = 0.1593

H̃
(A)
2,1 = 0.73 · 0.59 = 0.4307

H̃
(A)
1,1 = 0 · 0.59 = 0. (11)

5.3. Aggregation

In the next step, the rules of all features are combined for
each output variable. We fuse the M rules of each feature
by applying a maximum operator. This is done separately
for each output variable B

(i)
l ∈ B(i) of all components

i ∈ {V, A, D}. Thus the output membership is deter-
mined by the greatest degree of support,

H̃
(i)
l = max

1≤m≤M

{

H̃
(i)
l,m

}

. (12)

This means that the weighted rules are aggregated by an
operator of OR characteristic.

Example: To continue the previous example, we
need to extend it to at least two features, v1 and v2. If we
want to aggregate all rules of the fuzzy output variable
B

(V )
1 = positive, we therefore need to know the degrees

of support H̃(V )
1,1 = 0.1188 and H̃

(V )
1,2 = 0.85·0.2 = 0.17,
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1

, µ
(V )
B′

2

, and µ
(V )
B′

3

for Valence (example val-
ues)

where µ1,2 = 0.85 was assumed and ρ
(V )
2 = 0.2 was read

from Tab.1.
This yields the output membership

H̃
(V )
1 = max

{

H̃
(V )
1,1 , H̃

(V )
1,2

}

= 0.17. (13)

5.4. Implication

Implication defines how the output membership function
is affected by the conclusions of each aggregated rule. At
this point of inference the degrees of support H̃

(i)
l of each

output variable B
(i)
l are mapped on the output member-

ship functions µ
(i)
Bl

(α). These output membership func-
tions are shown in Fig.2. The implication therefore deter-
mines how the general output membership functions are
transformed due to the features of a test signal.
We use product implication. Therefore we keep the shape
of the output membership functions in Fig.2 and scale
them by multiplying them with the degrees of support,

µ
(i)
B′

l

(α) = H̃
(i)
l · µ

(i)
Bl

(α). (14)

Example: We have calculated the degree of support
of the fuzzy output variable B

(V )
1 = positive, H̃

(V )
1 =

0.17. Therefore the dashed membership function in
Fig.2a) is scaled by the factor 0.17 to represent the value
positive for the given test signal, see Fig.4.

5.5. Accumulation

As a last step within the inference part, the L = 3 linguis-
tic variables B

(i)
l , 1 ≤ l ≤ L, are fused for each emotion

component. To obtain one membership contour only, the
three membership functions of the output variables are
accumulated using maximum method.

µ
(i)
B′(α) = max

1≤l≤L

{

µ
(i)
B′

l

(α)
}

∀α (15)

Example: The three output membership functions
µ

(V )
B1

, µ
(V )
B2

, and µ
(V )
B3

for Valence are accumulated for

the example values H̃
(V )
1 = 0.17, H̃

(V )
2 = 0.48, and

H̃
(V )
3 = 0.82. The results are indicated by the thick line

in Fig.5.
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5.6. Defuzzification

Finally, from the membership contour µ
(i)
B′(α) of each

emotion component, a crisp estimate has to be calculated.
This is achieved using centroid method. The centroid x̂(i)

of the accumulated membership function µ
(i)
B′(α) yields

the estimate of the emotion component i ∈ {V, A, D}. It
can be calculated as

x̂(i) =

∫ 5

1
α · µ

(i)
B′(α)dα

∫ 5

1 µ
(i)
B′(α)dα

. (16)

The classifier output therefore consists of 3 estimates of
the 3 emotion components: x̂(V ), x̂(A), x̂(D).

Example: The output membership function µ
(V )
B′ of

the previous example is defuzzified applying centroid
method. This yields the emotion component estimate
x̂(V ) = 3.79 as can be seen in Fig.6.

6. Results
The fuzzy inference system presented above was tested
on the spontaneous speech database described in section
4. Thus, the rule system was initialized using 499 signals
of which both the acoustic features and the emotional
content attested by the evaluators was available. After-
wards, each of the sentences was tested as an unknown,
new signal.

For each of the test signals, the acoustic features ex-
plained in section 3 were extracted from the acoustic sig-
nal. These were taken as a crisp input for the fuzzy infer-
ence system. The classifier output finally was compared
to the emotion attested by the listeners.
For each emotion entity, we calculated the classification
error e(i) = |x(i) − x̂(i)|. Since the complete database of
N = 499 utterances was tested, we can also calculate the
mean error

E(i) =
1

N

N
∑

n=1

e(i)
n . (17)

The results are summarized in Tab.2. The classification
error obtained was E(V ) = 0.81 for Valence, E(A) =

Table 2: Classification results of the fuzzy logic classifier

Valence Activation Dominance
Mean error E(i) 0.81± 0.43 0.57± 0.42 0.58± 0.40

Correlation 0.47 0.78 0.75coefficient

0.57 for Activation, and E(D) = 0.57 for Dominance.
These values are to be seen in the scale of our emotion
space x(i) ∈ [1, 5], c.f. sec. 2. Therefore these errors are
already in the range of good values, at least for Activa-
tion and Dominance. If we consider that human evalua-
tion agreement, expressed in terms of standard deviation,
amounts to average values of 0.6 to 0.8 [7], the results
show that our automatic emotion classifier performs com-
parably well.

In addition to the mean error, the correlation coefficient
between the true emotion and the emotion estimates was
calculated. For the three emotion components, it amounts
to 0.47 for Valence, and to 0.6 for Activation and Dom-
inance, respectively. Since these correlation coefficients
are significantly greater than 0, it can be concluded that
there is indeed a positive correlation between our clas-
sifier results and the emotion attested by the evaluators.
Again, Activation and Dominance seem to be better to
classify than Valence.
Fig.7 shows a direct comparison of the rated emotions
and the estimates of the classifier. It can be seen that
the majority of the classifier results is located around the
neutral values of 3 in the range of moderate emotions,
x̂(i) ∈ [2, 4]. This is due to the inference engine giving
more weight on a moderate output than on an extreme
one. All parameters of the classifier have an impact on
the emotion estimates, especially the shape of the mem-
bership functions and the defuzzification operator.

It has to be mentioned also, that the speech database used
for this study is very demanding. It contains many dif-
ferent speakers. There was no distinction between male
and female speakers. There is always some background
noise. The nature of spontaneous speech also implies
some non-speech parts in the acoustic signal.

The classifier was also tested on a database of one fe-
male speaker only (N = 103), still containing authentic
emotions only. By using the same membership functions
and the same methods of implication, aggregation, and
defuzzification, a mean error of 0.41 (V), 0.31 (A), and
0.42 (D) was achieved [10]. This indicates that the re-
sults of speaker independent emotion classification might
also be further improved.
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Figure 7: Comparison of estimated emotion and ”true”
emotion attested by listeners for each signal in the
database

7. Conclusion and outlook

In this paper we presented an emotion classifier estimat-
ing the three emotion components Valence, Activation
and Dominance of an spontaneous emotional speech
utterance. We introduced a fuzzy inference system based
on rules derived from the correlation between acoustic
features extracted from the speech signal and emotion
component values attested by human listeners.

The fuzzy logic classification showed to be a promis-
ing basis for automatic emotion classification. The classi-
fication error is in the range of human evaluation perfor-
mance. Furthermore, the results are at least moderately
correlated with the true emotion.

In following studies, the single parameters of the classi-
fier should be varied to get an optimal performance. Dif-
ferent membership function shapes should be tested, too.

Also acoustic emotion recognition could be combined with
other modalities, like facial expression recognition. But
especially in the context of patient monitoring, other sig-
nals might also be used: blood pressure, heart beat rate,
respiratory rate. In a similar manner to the presented
work, some further rules related to features extracted from
the additional modalities could be defined. This might
further improve the emotion recognition results.
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